

### BOOLEAN MODELLING OF PSEUDOMONAS AERUGINOSA QUORUM SENSING AND VIRULENCE NETWORKS

Dr. M. Lisandra Zepeda Mendoza 11/07/2019

# **COMPUTATIONAL MODELS**



DOI: 10.1007/978-3-642-33959-2 13

A model is a representation of reality

Mathematical **description** of the characteristics of a system

Metabolic Topological Boolean Guide hypothesis

### *P. AERUGINOSA* QUORUM SENSING AND VIRULENCE NETWORKS



Drugs that directly target the **growth** ability of the pathogens select for resistance.

Target on the virulence factors instead



https://doi.org/10.1093/nar/gks1039

## MECHANISTIC BEHAVIOUR AND RESPONSE STRATEGIES

#### Acute

- Strict repression of virulence phenotype
- Non-strict activation of virulence phenotype
- Oscillatory activation of virulence phenotype
- Sustained low activation of virulence phenotype
- Stochasticity effect on the network attractor space
- Combination of response strategies

### Chronic

- Strictly repressed with moderate virulence phenotype activation
- Non-strictly repressed with moderate virulence phenotype activation





MvfR deletion

# **EXPERIMENTAL VALIDATION**

Network inherent

- Dynamicity
- Stochasticity
- Resilience

P. aeruginosa single gene mutants library:

- High-throughput screening on 200 conditions
- Non-targeted metabolome dataset



#### Acknowledgements

Manuel Banzhaf, Life and Environmental Sciences, University of Birmingham. Vanessa Phelan, Dept. of Pharmaceutical Sciences, University of Colorado. Lily Bull, Biomedical Science student, University of Birmingham.

# THANK YOU FOR YOUR ATTENTION

